1,637 research outputs found

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10−244 \times 10^{-24} Hz−1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10−266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10−251.2 \times 10^{-25} (25 Hz) to 2.2×10−262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure

    Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm−1^{-1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/cc with a tensor polarized 2^2H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.Comment: 4 pages, 3 figure

    Inclusive Electron Scattering from Nuclei at x≃1x \simeq 1

    Get PDF
    The inclusive A(e,e') cross section for x≃1x \simeq 1 was measured on 2^2H, C, Fe, and Au for momentum transfers Q2Q^2 from 1-7 (GeV/c)2^2. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit ξ\xi-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.Comment: 4 pages, RevTeX; 4 figures (postscript in .tar.Z file

    Relativistic effects and two-body currents in 2H(e⃗,e′p)n^{2}H(\vec{e},e^{\prime}p)n using out-of-plane detection

    Full text link
    Measurements of the 2H(e⃗,e′p)n{^2}H(\vec{e},e^{\prime}p)n reaction were performed using an 800-MeV polarized electron beam at the MIT-Bates Linear Accelerator and with the out-of-plane magnetic spectrometers (OOPS). The longitudinal-transverse, fLTf_{LT} and fLT′f_{LT}^{\prime}, and the transverse-transverse, fTTf_{TT}, interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2^2=0.15 (GeV/c)2^2. On comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions, and the importance of the two-body meson-exchange currents and isobar configurations. We demonstrate that these effects can be disentangled and studied by extracting the interference response functions using the novel out-of-plane technique.Comment: 4 pages, 4 figures, and submitted to PRL for publicatio

    Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter AedVA^V_{ed} was measured for the 2H⃗(e⃗,e′p)n^2 \vec{\rm H}(\vec e,e^\prime p)n reaction for missing momenta up to 350 MeV/cc at a four-momentum transfer squared of 0.21 (GeV/c)2^2. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio

    Covariant description of inelastic electron--deuteron scattering:predictions of the relativistic impulse approximation

    Full text link
    Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e,e′p)nd(e,e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q2Q^2 region obtained from the RIA and five other approximations are presented and compared. We conclude that measurements of the unpolarized coincidence cross section and the asymmetry AϕA_\phi, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson Lab.Comment: 54 pages and 24 figure
    • …
    corecore